concepto

Un fractal es un objeto geométrico cuya estructura básica, fragmentada o aparentemente irregular, se repite a diferentes escalas.

Es demasiado irregular para ser descrito en términos geométricos tradicionales.
Es autosimilar, su forma es hecha de copias más pequeñas de la misma figura.

No basta con una sola de estas características para definir un fractal. Por ejemplo, la recta real no se considera un fractal, pues a pesar de ser un objeto autosimilar carece del resto de características exigidas.


Podemos destacar tres técnicas comunes para generar fractales:

Sistemas de funciones iteradas (IFS). Unos conjuntos se reemplazan recursivamente por su imagen bajo un sistema de aplicaciones: el conjunto de Cantor, la alfombra de Sierpinski, el triángulo de Sierpinski, la curva de Peano, la curva del dragón, el copo de nieve de Koch o la Esponja de Menger, son algunos ejemplos.
Fractales de algoritmos de Escape, definidos por una relación de recurrencia en cada punto del espacio (por ejemplo, el plano complejo): el conjunto de Mandelbrot, conjunto de Julia, y el fractal de Lyapunov.
Fractales aleatorios, generados por procesos estocásticos, no deterministas: el movimiento browniano,el vuelo de Lévy, los paisajes fractales o los árboles brownianos. Estos últimos son producidos por procesos de agregación por difusión limitada..

Comentarios

Publicar un comentario

Entradas populares